Z = 2

Mo $K\alpha$ radiation

 $0.49 \times 0.20 \times 0.10 \text{ mm}$

 $\mu = 0.64 \text{ mm}^{-1}$

T = 298 K

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N,N'-Bis(2,5-dichlorophenyl)isophthalamide

Ruitao Zhu, Jinlong Dong, Yu Zuo and Yuehong Ren*

Department of Chemistry, Taiyuan Normal University, Taiyuan 030031, People's Republic of China

Correspondence e-mail: ruitaozhu@126.com

Received 19 July 2011; accepted 5 August 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; R factor = 0.042; wR factor = 0.110; data-to-parameter ratio = 13.2.

The asymmetric unit of the title compound, $C_{20}H_{12}Cl_4N_2O_2$, contains one half-molecule with a center of symmetry along a $C \cdots C$ axis of the central benzene ring. The two C=O groups adopt an anti orientation and the two amide groups are twisted away from the central benzene ring by 27.38(3) and 27.62 (4)°. The mean planes of the dichloro-substituted benzene rings are twisted by $7.95 (4)^{\circ}$ with respect to the benzene ring. The crystal packing is stabilized by weak intermolecular N-H···O interactions.

Related literature

For the design of artificial receptors related to isophthalamide, see: Gale (2006). For related structures, see: Light et al. (2006); Kavallieratos et al. (1997, 1999). For standard bond lengths, see: Allen et al. (1987).

Experimental

Crystal data C20H12Cl4N2O2

 $M_r = 454.12$

Monoclinic, $P2/c$	
a = 11.3661 (11) Å	
b = 10.0239 (9) Å	
c = 8.9470 (7) Å	
$\beta = 109.988 \ (1)^{\circ}$	
V = 957.95 (15) Å ³	
()	

Data collection

Bruker SMART CCD area-detector	4668 measured reflections
diffractometer	1687 independent reflections
Absorption correction: multi-scan	1152 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 2004)	$R_{\rm int} = 0.030$
$T_{\min} = 0.745, \ T_{\max} = 0.939$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.042$	128 parameters
$wR(F^2) = 0.110$	H-atom parameters constrained
S = 1.01	$\Delta \rho_{\rm max} = 0.27 \text{ e} \text{ Å}^{-3}$
1687 reflections	$\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N1-H1\cdotsO1^{i}$	0.86	2.22	3.046 (3)	160
Symmetry code: (i) x	$v_{1} - v_{1} + 1, z_{1} - \frac{1}{2}$			

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL.

The authors gratefully acknowledge the University Technology Development Project in Shanxi Province (grant Nos. 20091144, 20101116).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2095)

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA

Gale, P. A. (2006). Acc. Chem. Res. 36, 465-475.

Kavallieratos, K., Bertao, C. M. & Grabtee, R. H. (1999). J. Org. Chem. 64, 1675-1683.

Kavallieratos, K., Gala, S. R., Austin, D. J. & Grabtee, R. H. (1997). J. Am. Chem. Soc. 119, 2325-2326.

Light, M. E., Gale, P. A. & Navakhun, K. (2006). Acta Cryst. E62, o1097-01098.

Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2011). E67, o2311 [doi:10.1107/S1600536811031758]

N,N'-Bis(2,5-dichlorophenyl)isophthalamide

R. Zhu, J. Dong, Y. Zuo and Y. Ren

Comment

Anion recognition is an area of growing interest in supramolecular chemistry due to its important role in a wide range of environmental, clinical, chemical, and biological applications. Considerable attention has been focused on the design of artificial receptors that are able to selectively recognize and sense anion species (Gale, 2006). Artificial receptors, containing the isophthalamide core function as effective receptors for halide anions in very simple systems (Kavallieratos *et al.*, 1997, 1999; Light *et al.* 2006). We report here the crystal structure of the title compound, $C_{20}H_{12}Cl_4N_2O_2$, (I), related to these types of receptors.

In the title compound,(I), the asymmetric unit containing one-half of the molecule crystallizes with a center of symmetry along the C2—C5 axis in the benzene ring thereby producing the desired structure (Fig. 1). In the molecule the two C=O groups adopt an *anti* orientation and the two amide groups are twisted away from the center benzene ring by 27.38 (3) ° and 27.62 (4) °, respectively. The mean planes of the dichloro substituted benzene rings are twisted by 7.95 (4) ° with that of the benzene ring. Bond lengths are in normal ranges (Allen *et al.*, 1987). Crystal packing is stabilized by weak N—H···O intermolecular interactions (Table 1).

Experimental

N,N-Bis(2,5-dichlorophenyl)isophthalamide (I) was prepared according to literature procedures (Kavallieratos *et al.*, 1997, 1999). To dichloromethane (20 ml) in a 100 ml flask was added 2,5-dichloroaniline(1.62 g, 10 mmol) with magnetic stirring. Isophthalogyl chloride (1.01 g, 5 mmol) was added gradually, and the reaction mixture was stirred at room temperature for 2 h and then poured into ice water (100 ml). The product was precipitated as a white powder, which was washed three times with water. Recrystallization from dimethyl sulfoxide solution produced the crystals of the title compound.

Refinement

H atoms were placed in idealized positions and allowed to ride on their respective parent atoms, with C—H = 0.93–0.96 Å, N—H = 0.86Å and U_{iso} (H)= 1.2 U_{eq} (C,N) or 1.5 U_{eq} (C_{methyl}).

Figures

Fig. 1. The molecular structure of the title compound with displacement ellipsoids are drawn at the 30% probability level.

N,N¹-bis(2,5-dichlorophenyl)benzene-1,3-dicarboxamide

Crystal data

C20H12Cl4N2O2 $M_r = 454.12$ Monoclinic, P2/c Hall symbol: -P 2yc *a* = 11.3661 (11) Å *b* = 10.0239 (9) Å c = 8.9470(7) Å $\beta = 109.988 \ (1)^{\circ}$ $V = 957.95 (15) \text{ Å}^3$ Z = 2

F(000) = 460 $D_{\rm x} = 1.574 {\rm Mg m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 1505 reflections $\theta = 2.8 - 27.4^{\circ}$ $\mu = 0.64 \text{ mm}^{-1}$ T = 298 KPrism, colorless $0.49 \times 0.20 \times 0.10 \text{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer	1687 independent reflections
Radiation source: fine-focus sealed tube	1152 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.030$
ϕ and ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.8^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2004)	$h = -13 \rightarrow 6$
$T_{\min} = 0.745, T_{\max} = 0.939$	$k = -11 \rightarrow 11$
4668 measured reflections	$l = -10 \rightarrow 10$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.042$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.110$	H-atom parameters constrained
<i>S</i> = 1.01	$w = 1/[\sigma^2(F_o^2) + (0.0416P)^2 + 0.6846P]$ where $P = (F_o^2 + 2F_c^2)/3$
1687 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
128 parameters	$\Delta \rho_{\text{max}} = 0.27 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.30 \text{ e } \text{\AA}^{-3}$

- ·

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations

. .

between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
Cl1	0.64968 (9)	0.85140 (8)	0.38003 (10)	0.0726 (3)
C12	0.99324 (10)	0.70144 (15)	1.06068 (10)	0.1021 (5)
N1	0.7062 (2)	0.5769 (2)	0.4952 (2)	0.0412 (6)
H1	0.6911	0.5986	0.3974	0.049*
01	0.70204 (19)	0.4014 (2)	0.6539 (2)	0.0544 (6)
C1	0.6692 (2)	0.4532 (3)	0.5224 (3)	0.0392 (7)
C2	0.5000	0.4520 (4)	0.2500	0.0362 (9)
H2	0.5000	0.5448	0.2500	0.043*
C3	0.5811 (2)	0.3842 (3)	0.3794 (3)	0.0372 (6)
C4	0.5787 (3)	0.2456 (3)	0.3786 (4)	0.0537 (8)
H4	0.6306	0.1985	0.4657	0.064*
C5	0.5000	0.1782 (4)	0.2500	0.0638 (13)
Н5	0.5000	0.0854	0.2500	0.077*
C6	0.7666 (2)	0.6736 (3)	0.6099 (3)	0.0401 (7)
C7	0.7463 (3)	0.8080 (3)	0.5689 (3)	0.0489 (8)
C8	0.8009 (3)	0.9072 (4)	0.6768 (4)	0.0672 (10)
H8	0.7873	0.9962	0.6468	0.081*
C9	0.8753 (3)	0.8746 (4)	0.8289 (4)	0.0732 (11)
Н9	0.9104	0.9410	0.9034	0.088*
C10	0.8969 (3)	0.7431 (4)	0.8689 (4)	0.0640 (10)
C11	0.8451 (3)	0.6423 (3)	0.7628 (3)	0.0513 (8)
H11	0.8624	0.5536	0.7932	0.062*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0832 (7)	0.0488 (5)	0.0643 (6)	0.0049 (4)	-0.0025 (5)	0.0043 (4)
Cl2	0.0748 (7)	0.1852 (13)	0.0349 (5)	-0.0308 (7)	0.0039 (4)	-0.0066 (6)
N1	0.0485 (14)	0.0452 (14)	0.0276 (11)	-0.0025 (11)	0.0101 (10)	0.0034 (10)
01	0.0655 (14)	0.0594 (13)	0.0382 (11)	0.0103 (11)	0.0177 (10)	0.0161 (10)
C1	0.0390 (15)	0.0439 (16)	0.0397 (16)	0.0121 (13)	0.0197 (13)	0.0064 (13)
C2	0.041 (2)	0.0292 (19)	0.042 (2)	0.000	0.0197 (18)	0.000
C3	0.0366 (15)	0.0367 (15)	0.0427 (16)	0.0029 (12)	0.0191 (13)	0.0041 (12)
C4	0.0489 (18)	0.0418 (17)	0.069 (2)	0.0079 (15)	0.0184 (16)	0.0109 (15)
C5	0.069 (3)	0.027 (2)	0.089 (4)	0.000	0.019 (3)	0.000
C6	0.0347 (15)	0.0546 (18)	0.0327 (15)	-0.0042 (13)	0.0139 (12)	-0.0040 (13)
C7	0.0422 (17)	0.0531 (18)	0.0475 (17)	-0.0007 (14)	0.0101 (14)	-0.0103 (14)

supplementary materials

C8 C9 C10 C11	0.061 (2) 0.056 (2) 0.0418 (18) 0.0395 (16)	0.064 (2) 0.102 (3) 0.115 (3) 0.077 (2)	0.075 (2) 0.061 (2) 0.0355 (17) 0.0369 (16)	-0.0116 (18) -0.020 (2) -0.016 (2) -0.0049 (16)	0.020 (2) 0.0185 (19) 0.0131 (14) 0.0128 (14)	-0.0223 (19) -0.040 (2) -0.0138 (19) 0.0011 (16)
Geometric param	neters (Å, °)					
Cl1—C7		1.727 (3)	С4—Н4	Ļ	0.93	00
Cl2—C10		1 742 (3)	C5-C4	i	1.370 (4)	
N1-C1		1 358 (3)	С5—Н5		0.9300	
N1—C6		1.408 (3)	C6-C1	1	1.39	0 (4)
N1—H1		0.8600	C6—C7	,	1.39	5 (4)
O1—C1		1.222 (3)	С7—С8		1.37	6 (4)
C1—C3		1.498 (4)	C8—C9	1	1.373 (5)	
C2—C3 ⁱ		1.387 (3)	С8—Н8	3	0.93	00
C2—C3		1.387 (3)	C9—C1	0	1.36	6 (5)
С2—Н2		0.9300	С9—Н9)	0.93	00
C3—C4		1.389 (4)	C10—C	211	1.37	4 (5)
C4—C5		1.370 (4)	С11—Н	[11	0.93	00
C1—N1—C6		127.0 (2)	C11—C	6—C7	118.0 (3)	
C1—N1—H1		116.5	C11—C	6—N1	123.	5 (3)
C6—N1—H1		116.5	C7—C6	—N1	118.:	5 (2)
01—C1—N1		123.3 (3)	C8—C7	—С6	121.1	2 (3)
O1—C1—C3		121.4 (3)	C8—C7		119.2 (3)	
N1—C1—C3		115.2 (2)	C6—C7	Cl1	119.0	6 (2)
C3 ⁱ —C2—C3		121.2 (3)	C9—C8	С7	120.	0 (3)
C3 ⁱ —C2—H2		119.4	C9—C8	—Н8	120.	0
С3—С2—Н2		119.4	С7—С8	H8	120.	0
C2—C3—C4		118.7 (3)	C10—C	29—C8	118.9 (3)	
C2—C3—C1		123.1 (2)	C10—C	9—Н9	120.5	
C4—C3—C1		118.2 (2)	C8—C9	—Н9	120.5	
C5—C4—C3		120.2 (3)	C9—C1	0—C11	122.2 (3)	
C5—C4—H4		119.9	C9—C1	0—Cl2	119.	1 (3)
C3—C4—H4		119.9		10—Cl2	118.	7 (3)
$C4-C5-C4^{1}$		120.9 (4)	C10—C	CII—C6	119.3	5 (3)
С4—С5—Н5		119.6	C10—C	HII	120.2	
C4 ¹ —C5—H5		119.6	C6—C1	I—HII	120.3	2
C6—N1—C1—O	1	-12.3 (4)	C11—C	6—C7—C8	-0.8	(5)
C6—N1—C1—C	3	166.2 (2)	N1—C6	6—C7—C8	178.	8 (3)
C3 ⁱ —C2—C3—C	4	-0.9 (2)	C11—C	6—C7—Cl1	179.	9 (2)
C3 ⁱ —C2—C3—C	21	-179.2 (3)	N1—C6	—C7—Cl1	-0.6	(4)
O1—C1—C3—C	2	151.0 (2)	C6—C7	—С8—С9	-1.0	(5)
N1-C1-C3-C	2	-27.5 (3)	Cl1—C	7—С8—С9	178.	3 (3)
O1—C1—C3—C4	4	-27.4 (4)	С7—С8	с9—С10	2.0 (5)
N1-C1-C3-C4	4	154.2 (3)	C8—C9	—C10—C11	-1.1	(6)
C2—C3—C4—C	5	1.9 (4)	C8—C9	—C10—Cl2	179.	0 (3)
C1—C3—C4—C	5	-179.7 (2)	C9—C1	0—C11—C6	-0.8	(5)

C3-C4-C5-C4 ⁱ	-1.0 (2)	Cl2—C10—C11—C6		179.1 (2)
C1—N1—C6—C11	29.4 (4)	C7—C6—C11—C10		1.7 (4)
C1—N1—C6—C7	-150.1 (3)	N1-C6-C11-C10		-177.8 (3)
Symmetry codes: (i) $-x+1$, y , $-z+1/2$.				
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1···O1 ⁱⁱ	0.86	2.22	3.046 (3)	160.
Symmetry codes: (ii) x , $-y+1$, $z-1/2$.				

